
Electroweak spin gauge theories and the frame field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 6561

(http://iopscience.iop.org/0305-4470/20/18/052)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A :  Math. Gen. 20 (1987) 6561-6580. Printed in the UK 

Electroweak spin gauge theories and the frame field 

J S R Chisholm? and R S Farwell$ 
t University of Kent, Canterbur), Kent CT2 7 N 2 ,  UK 
$ St Mary’s College, Twickenham, Middlesex, L‘K 

Received 18 May 1987, in final form 16 J u l y  1987 

Abstract. The principles of spin gauge theories are explained. A particular spin gauge 
symmetry within the Clifford algebra C2,6 is shown to give the correct GSW electroweak 
interactions for the electron-neutrino system. A new concept of mass is introduced, the 
electron mass being interpreted as an interaction with the ‘frame field’, which is proportional 
to the spacetime dependent Dirac matrices { f ” ‘ .~)} ,  Including the frame field in the 
‘extended covariant derivative‘ A’’ and calculating [A”, A ’ ]  gives, along with the boson 
Lagrangian kinetic terms, exactly the correct photon, Wand 2 mass matrix. Transformation 
of the lepton extended cokariant derivative to the ’quark representation‘ of the Clifford 
algebra, which is determined by the electromagnetic coupling constants, reproduces the 
GSW interactions for the up and down quarks. Thus, for the first generation electroweak 
theory, the ‘Higgs-Kibble mechanism’ is replaced by the frame field concept of mass. The 
models studied indicate that an energy associated with the frame field is approximately 
three times the W boson rest mass M,. A refinement of the theory suggests a fermion 
mass of the order of M,. 

1. The spin gauge theory principle 

A spin gauge theory is a Lagrangian field theory. As in standard gauge theories, the 
form of the Lagrangian density is determined by requiring invariance under certain 
local (that is, spacetime dependent) transformations. However, spin gauge theories 
[ 1-31 differ from standard theories in recognising that spinors are elements of Clifford 
algebras, and  in requiring that all elements of an algebra be subjected simultaneously 
to a gauge transformation. In this section, we exemplify the spin gauge principles by 
treating the free Lagrangian density Lo for a Dirac bispinor, describing an  electron. 

We represent the electron by a four-component column vector &(XI, where x =  
{x+, p = 1 ,2 ,3 ,4}  is the set of spacetime coordinates, and define a set of 4 x 4 matrices 
{ y p ,  p = 1 ,2 ,3 ,4}  to be a representation of the Dirac matrices. In  later sections we 
also use a four-component column vector v ( x )  representing the neutrino bispinor. The 
‘bar’ or Hermitian conjugate of any four-component bispinor (I, is given by 6 = (I,’y, 
where the 4 x 4 conjugation matrix y is defined by y: = y y p y - ’  and is such that y +  = y.  

The set of Dirac matrices { y p ,  p = 1,2 ,3 ,4}  is a representation of the set of 
generators of the Dirac algebra, which is the real four-dimensional Clifford algebra 
C1,3 associated with spacetime. The set { y + }  represents the set of vectors of the algebra. 
The inner product of these vectors defines the Minkowski spacetime metric through 
the basic anticommutation relations 

(1.1) Y+YY + Y“YP = 2g+”I 
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where (g,”) = diag(-I, -1, - 1 , l )  and 1 is the 4 x 4  identity matrix. The full algebra 
is { y A ;  A = 1,2,. . . , 16}= ! I ,  ykL,  Y,,., y S F ,  y S ;  P, v = 1,2,3,4, P < v>, where Y S =  
y 1 y 2 y 3 y 4 ,  y S w  = iy5y, and Y,“ = ~ Y , Y ~ .  141. 

Dirac bispinors are elements of the minimal left ideal of the algebra Cl,3. The 
geometrical significance of representing bispinors as elements of the minimal left ideals 
of the Dirac algebra was discussed by Kahler [ 5 ] .  Elements of the minimal left ideal 
are 4 x 4  matrices having non-zero entries in one column only. The column vector 
E ( X )  is then identified with this non-zero column of the matrix. Since the Dirac spinors 
and the Dirac matrices are both expressed in terms of a representation of the algebra 
IC,,~,  if we choose to change the representation of the spinor by performing a gauge 
transformation, then we should also change the representation of the matrices in a 
corresponding way. Since E F  is a 4 x 4 matrix, and  E E  and the matrices ye are all 
elements of the same algebra, the requirements of algebraic consistency suggest that 
the matrices y’ should transform in the same way as &E. The requirement that {y’}, 
as well as E and E, transform under gauge transformations is the fundamental difference 
between standard and spin gauge theories. 

The free electron Lagrangian density is 

L,=t[EiYF(d*(E)-(dLI&)+yiy’&~-mE& (1.2) 

where m is the mass of the electron. This is invariant under the global spin gauge 
transformations 

Y ,  ’ RY,R-‘ (1.3a j 

&’RE E’ER-I (1.36) 

R = e - ’ @  ( 1 . 3 ~ )  

where 8 is any element of C1,3 and in general is a Clifford number 

e = eoz + e p y p  + ee”yVv + es@ys,, + e 5 y S .  

However, if R is x-dependent, that is, if we consider a local gauge transformation 
(1.3), then 

Lo + Lo+ ;[ Fi y,R-’(d’R ) E  - &+(d’R+)( R+) - ’yyp&1 

and the invariance of the Lagrangian is lost. Invariance can be restored by replacing 
the derivative 3’ in (1) by a covariant derivative 

De =d’ -R’(x) 

where R’ belongs to the algebra Ci.3. The resultant Lagrangian L ,  is given by 

L ,  = L”+ &iy,R”+ (1.41 

R” + RR’R-‘ + R(a*R-I) .  

and is invariant under x-dependent transformations (2)  provided that 

(1.5) 

A study of this full group of transformations has been carried out by McEwan [ 6 ] .  
We note that the original Weyl gauge theory of electromagnetism corresponds to taking 
e ( x )  = e o ( x ) I  simply; then R commutes with y’, which are therefore unchanged by 
the transformation ( 1 . 3 ~ ) .  So the Weyl theory is both a standard and  a spin gauge 
theory. 
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This exemplifies the basic principle of a spin gauge theory: that we gauge the 
freedom to choose a different representation of both spinors and spin ( y )  matrices at 
each point x in spacetime. The set of matrices { y,} appearing in the Lagrangian (1.4) 
are in general x-dependent and  hence constitute the components of a matrix field. 
Since y, are the basis vectors in the Clifford algebra of spacetime, we refer to yb as 
the components of the frame field. 

Our original aim in proposing such a gauge theory was that it should provide a 
framework for the unification of the strong, weak and electromagnetic interactions in 
which the three interactions would be associated with different aspects of the same 
symmetry princip!e [4,7,8]. In this paper we present a simplified model describing 
the Glashow-Salam-Weinberg (GSW) electroweak interactions of the first generation 
of fermions [9]. A single bispinor cannot be used, since the weak interactions mix the 
spinors of the electron and  its neutrino. A multispinor consisting of several spinors 
is formed and the Clifford algebra enlarged accordingly. Generally, if the multispinor 
has 2" components then a Clifford algebra C,,q ( p + q = 2 n )  is used. This Clifford 
algebra is associated with a 'n-dimensional inner product space. We choose to relate 
the first four basis vectors of this 2n-dimensional space to { y,}, so that four-dimensional 
spacetime can be thought of as embedded in the higher dimensional space. However, 
the multispinors are assumed to be functions of the spacetime coordinates x only, and 
we d o  not introduce coordinates corresponding to the remaining (2n -4) dimensions. 
It might be possible to introduce Kaluza-Klein ideas using these higher dimensions, 
but we d o  not d o  so in this paper. 

We now conclude this section by enunciating the spin gauge principle, which has 
been used by several authors [l-4, 6-8, 10, 111: 

The Lagrangian density for a 2"-component multispinor t,b is of the form 

L ,  = $6irG(dp$) - ( d F $ ) T i r b $ ]  - (LM$ + (Lir,Clwsr, (1.6a) 
where {r,, i = 1,2 ,  . . . , 2 n }  is a set of generators of the Clifford algebra Cp,q to which 
$ belongs. The matrix M also belongs to Cp,q. The form of L ,  is determined by 
requiring local gauge invariance under the spin gauge transformations 

$-+ R*= *' r, -+ R T , R - '  = r:. (1.6b) 
The generators of the transformation R are elements of the algebra Cp,q. We assume 
that the conjugation matrix transforms to r', whose form can be deduced by 
demanding that ri+ = T'TiT'-'; the transformation is then 

( 1 . 6 ~ )  I-+ I-'= ( R - ' ) ' T (  R - '  ) 

which ensures that 

6- 6'1 6 R - I .  (1.6d) 
We shall use a set of generators {l',} which is spacetime dependent; that is, the 

elements r ,  of the vector basis, whose inner products define the metric of a 2n- 
dimensional flat space, are position dependent. The set {r,} is defined from the constant 
set {rp}, which represents the same algebra, by a similarity transformation of the form 

r,  = R T : R - ' .  (1.7) 
The similarity matrix R is the exponential of a Clifford number in the constant 
representation of Cp,q with position dependent coefficients. The transformation (1.7) 
means that 

(1.8) Tr r ,  = Tr rp. 
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One advantage of spin gauge theories over standard theories is that there are more 
allowable transformations leaving a given Lagrangian invariant. In  standard Yang- 
Mills gauge theories, the rg in ( 1 . 6 ~ )  are always taken as ZkOy, and the gauge 
transformations R as SOZ,, where S is a k x k matrix. Thus, in Yang-Mills theories, 
R always commutes with T r  and, in order that 6 transforms to (LR-’, R must be 
unitary. Consequently, the range of Yang-Mills gauge transformations is restricted. 
However, in spin gauge theories, the invariance of L1 can be retained even when R 
and r, d o  not commute, and  also when R is not unitary. If some of the elements r A  

of the Clifford algebra used as generators of R d o  not commute with r,, then, in order 
to ensure reality of the Lagrangian, it is only necessary that they are anti-self conjugate 
in the sense that 

rA = -TA 
where the bar conjugate r A  is defined by 

TA = r-T:r (1.9) 

2. The lepton Lagrangian 

We express our theory of the electron and  its neutrino in terms of representations of 
the Clifford algebra C2,6.  The representations are defined in terms of a set of spacetime 
dependent generators of the Dirac algebra {y,(x); p, v = 1,2 ,3 ,4)  and two sets of 
constant Pauli matrices {A,}  and {p , } ,  where i , j  = 1,2 ,3;  we also take A 4  and p4 to be 
(2 x 2) unit matrices. The basis elements of the Clifford algebra are then 

A , p , y A ( i , j = l , 2 , 3 , 4 ; A = l , 2  , . . . ,  16). (2.1) 

The elements of the algebra are in general space dependent through the set { y A ( x ) } .  
However, to enable us to use the usual four-component left and right helicity projection 
operators ; ( I  i iyc),  we impose the condition that y5 is constant. Gauge variations of 
the helicity operators are possible, and have been investigated by Barut and  McEwan 

The matrices (2.1) act upon 16-component spinors which, for leptons, have the form 
[IO]. 

r~ = ( E L E R  vL v R I T  ( 2 . 2 )  
where are the four-component left- and  right-handed electron spinors 

= ; ( I  + i y 5 ) ~  E R  = ; ( I  - iy5)& ( 2 . 3 ~ )  

and likewise for the left- and  right-handed neutrino spinors vL and v R .  The conjugates 
of the spinors ( 2 . 3 ~ )  are defined so that the suffixes L, R indicate projection operators 
;(Z+iy5) and  i( I -iy5) respectively; thus 

cL=  +E( I+ iy , )  cR = ~ E ( I  -iy5) (2.36) 
and likewise for the conjugate neutrino spinors. I t  is necessary for all of these spinors 
to have four components, in order to provide a sufficient number of dimensions to 
accommodate the space of SU(2) transformations and to allow transformation to the 
‘quark representation’ at a later stage. If y is the conjugation matrix for the particular 
representation of the Dirac algebra used, we choose the conjugation matrix r of the 
c2.6 representation to be h4p,y,  so that the conjugate to 4 is 

6 = ++h4pI y = ( F L F R v L v R ) .  (2.4) 
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This choice of r ensures that the norm of 4 is 

IJS = E L E L +  E R E R +  c L v L +  V R U R  

= E& + fiu (2.5) 

the sum of the usual norms of the electron and neutrino spinors. 
For the lepton representation, we use the C2,,  basis of anti-commuting vectors 

r, = A4PIYp 

Ts = -ih2p21 

rh = iA,p21 

( p  = 1,2 ,3 ,4)  

r7 = A4P1 7.S 

r8 = A,PJ 

The metric (g,, ) of the 8-space is thus defined by 

g,, i , ,  = rf = - I , ,  ( i  = 1,2 ,3 ,5 ,6 ,7) .  

g , , ~ , , = r ~ = g , , I , , = r ~ = + i , ~ .  
(2.7) 

The x-dependent spacetime vector basis { y,} is thus ‘embedded’ in the 8-space vector 
basis {r, , Tz,. , . , r,} through the first four components of (2.6). 

L~ = t[&ir,(a”S) - (aptb)+rir,+] - fmG(A4+ A3)p44 

The free Lagrangian density, in 16-component form, is 

(2.8) 

the factor tm(A,+Al) provides a factor m for the electron spinors in the mass term, 
and a factor 0 for the neutrino spinors. The lepton kinetic terms are given by 
decomposing the first term in (2.8); for instance, 

The SU(2) symmetry group in the GSW theory is generated by the rotation operators 
in the space spanned by {r5, r,, r7}; these are 

U ,  = firbr7 = i ih  ,p3y5 (2.9a) 
U -L.r r -1. 

U -L.r r -I 
2 - 2 1  7 5 - 2 l A 2 P 3 Y s  

3 - 2 1  5 6-?h3P41. 

The generator of the U(1) group is taken to be 

(2.96) 

( 2 . 9 ~ )  

P = $ir5r6r7r8 = $ h 4 p 3 y s  (2.9d) 
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a multiple of the pseudoscalar of the 4-space spanned by {rs, F6, r,, r8}; this ensures 
that P commutes with { U,  ; a = 1,2,3}. Also, P and the set { U,; a = 1 , 2 , 3 }  all commute 
with the 16 x 16 helicity projection operators 

h ,  = $ ( l 1 6 * i A 4 ~ 4 ~ s ) .  (2.10) 

The spin gauge transformation R ( x )  which generates the GSW interaction for leptons 
is 

R ( x )  = exp[-igh+U,O,(x) -ig’(h-U,+ P ) O , ( x ) ]  (2.11) 

with summation over a = 1 ,2 ,3 .  The x-dependence of R is through the 6, and  6, 
alone, since the elements of the Clifford algebra in (2.11) are constant. The free 
Lagrangian (2.8) is not invariant under the transformations (1.6). However, by taking 
the lepton Lagrangian to be 

L ,  = + [ i i r p ( D p + )  - &fip i rp+]  -$?&A,+ ~ , ) p , +  (2.12) 

where 

D”+ = a”+ - Rp4 6 6 ~  = (ap+)’r - (clap ( 2 . 1 3 ~ )  

and 

ClP = igh+ U, WE + ig‘( h-  U,  + P )  Wg 

=%gh+(iA,p,y, W; +A3p4ZWY) 

+ig’(h-A,p,l+iAdp~Ys) W$} (2.13 b )  

with summation over j = 1,2 ,  we can guarantee spin gauge invariance provided that 

Clp + R R P R - ‘ +  R(apR-’ ) .  (2.13a) 

The requirement that y s ,  {A,}  and { p , }  be constant, together with the identities h+h- = 
h-h ,  = 0, ensure that the transformation ( 2 . 1 4 ~ )  splits into the following gauge transfor- 
mations of the fields W:: and W:: 

h+U, W:: --* R,h+U,  WZR;‘ -ig-‘Rl(aPR;’) (2.146) 

W: + W: +ape, ( 2 . 1 4 ~ )  

where R I  = exp[-igh+U,O,(x)]. The transformations (2.14b) and  ( 2 . 1 4 ~ )  are the 
familiar GSW SU(2)  and U(  1) gauge transformations respectively. 

The interaction terms in the Lagrangian (2.12) are 
- 

-+iAlpl ypCIP$. (2.15) 

We now reduce to four-component form the terms given by substitution of ( 2 . 1 3 ~ )  
into (2.15). The terms involving the charged fields { W;} give 

-fig&(ipl)i(AIWl +A2WZ)p3h+ys$ 
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The remaining terms in (2.15) can be reduced in a similar way, giving 

(2.17) 

(2.18) 

and 

-$ig’&A4pz W4(i-y5)$ = fg’(EW4& + VW4v).  (2.19) 

The standard definition of the Weinberg angle Ow gives 

g = e/sin ON. g ’ =  e/cos O w .  (2.20) 

where e is the charge on the electron. Then introducing the fields A” and Z” through 

(2.21a) 

(2.21b) 

The sum of the neutral field interaction terms (2.17), (2.18) and (2.19) reduce in the 
usual way to 

W; = sin O w  A” -cos OwZ” 

W$ = cos OwA” +sin OWZ”, 

e ~ A e + t g ( 2  sin’ e,Ez& - E ~ Z E ~ +  aRZvL)/cos Ow. (2.22) 

Since expressions (2.16) and (2.22) define the standard electroweak interactions of the 
leptons, we have shown that (2.13b) is the correct covariant derivative in this theoretical 
framework. 

The form of the covariant derivative defined by (2.13) and (2.14) ensures that D”+ 
is covariant under the transformation (2.11), that is, 

DW$ + RD”9. (2.23) 

We can deduce that the commutator [D”, D ” ]  transforms by 

[D”,  DUI- .  R [ D W ,  D’IR-’  (2.24) 

and so can be used to construct the boson kinetic terms in the Lagrangians. Using 
the form of D” given in (2.13) and the constancy of the transformation generators, it 
is not difficult to show that 

(2.25) 

From this expression we can project out the curls of the four boson fields as gauge- 
invariant traces: 

i Tr{h, Lra[D”, D ’ ] } /  16g =$(a” W: -a ”  W: + gEUhc[ W;, W:]) 

iT r{ (h -U,+P) [D” ,  D‘]}/48g‘=f(a’WW:, -a’W:). 

From these expressions we can construct the Lagrangian terms for the free bosons: 

(-+)[(a,W,, -a ,wa ,+gE,hm‘hr ,  w , , ] ) ( a ” w : - a ’ ~ :  

+gFuhc[ W;, W‘”1) + (a,w4, -a, w+)(a” w: - a ’  v ) ] .  (2.26) 
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3. Mass and the extended covariant derivative 

The set of vectors {T’(x)} is in  general x-dependent, but can be related to a constant 
set {rh} by a gauge transformation R ( x ) :  

T ’ (x )  = RTbR-’. (3.1) 

Dongpei [ 2 ]  has pointed out that choosing a constant set, as we d o  in practical 
calculations, for instance, in the decomposition of (2.15), is thus equivalent to fixing 
the gauge, apart from a constant generalised Lorentz transformation. We call this the 
‘Dongpei gauge’. He has also shown that extra gauge-invariant terms can be introduced 
into the Lagrangian; these become boson mass terms when r ’ ( x )  = r;,. By choosing 
the Dongpei gauge, the set of spacetime vectors { y ” }  representing the frame field 
becomes constant, In this section we shall show how boson mass terms arise naturally 
if we treat the frame field like other fields by introducing it into the covariant derivative. 

First, we must recognise that yp (x )  is dimensionless, and needs to be multiplied 
by a constant of the dimension of (mass/coupling constant) to ensure that it has the 
same dimensions as the W fields; for classical fields it is not correct to treat coupling 
constants as dimensionless. Introducing the universal constant 7, we amend the 
definition of the ‘frame field’ to include this factor: 

4 ” ( x )  = 7YP(X). (3.2) 

To see how the frame field can be incorporated into the covariant derivative, consider 
first the free Dirac equation 

(iy,dp - I m ) $  = 0. 

This can be written as 

i y, ( I ap + f im y fi ) II, = 0. 

If we now define a coupling constant f by 

m =4f7 (3.3) 

this equation takes the form 

iy,(Za”+$#J”)$=O. 

The term in brackets in this equation has the form of a covariant derivative; the constant 
A proportional to the mass, is the strength of coupling of the fermion to the frame 
field. We therefore see mass as a form of ‘drag’ or friction exerted by the frame field 
upon the fermion. A massless particle moves without friction through the frame field, 
at the velocity of light. We call the constant 77 the ‘frame inertia’, since it causes 
particles to travel more slowly than their ‘natural speed’, the speed of light. 

Let us now apply this idea to the free Lagrangian of the leptons in our model, The 
mass m of the electron can be included if we modify the Lagrangian 12.8) to 

Lo=4~[ iA4p1y, (dp$)  -1(A4+A3)p41m4]+conj (3.4) 

the factor ( A 4 + A 3 )  ensuring that the neutrino mass is zero. Factoring iA4p,yg from 
the terms in square brackets, the derivative acting on II, is augmented to 

A4p41d@ +i (A4+A3)p ,myg /8  = I16ap  +$i(A4+A3)p,f4’. (3 .5)  
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I f  we now include the term -ap, as in (2.13), we obtain the ‘extended covariant 
derivative’ 

A@ = I , 6 a p  - np +i.( 21 A4+ A d P l f 4 @  

= l16C3p -i{igh+(iA,p,y, Wy +A3p41Wy) 

+ig’(h-A3p41+iA4p3y,) Wl;}+$(A4+A3)p,f4p. (3.6) 

The last term in (3.6) is simply a sum of elements of the algebra, all of which transform 
as the basis vectors do; thus it transforms by (1.6b) and by using (2.23), we deduce that 

A’& -+ R A p $  

where R is still defined by (2.1 l ) ,  so that the GSW interactions are preserved. Although 
the reason for the covariance of the last term in A@ is exceptional, we see that the 
frame field appears in the extended covariant derivative in exactly the same form as 
the W fields. This is the reason for treating the mass term in the way we have. However, 
in this paper, the inclusion of the last term in (3.6) does not correspond to an  additional 
symmetry transformation. We shall comment on this at the end of the paper. 

The analysis of § 2 has shown that the Lagrangian 

~ = ; [ t j i r , ~ ~ +  - ( ~ @ + ) ~ i r ~ $ ]  (3.7) 

formed from (2.8) by replacing ap by A*, gives the correct electroweak interactions 
for leptons; it also contains the electron mass term, with the neutrino mass equal to 
zero. In order to derive the free Lagrangian terms for the boson fields, we consider 
the commutator [ A p ,  A ” ]  of the extended covariant derivatives. This commutator is 
the sum of three different types of term, which are denoted by A, B, C. 

A terms. These are the terms already discussed in 9 2, arising from the derivative 
terms and the W field terms. As in (2.25), they are 

B terms. These are the terms arising from the commutator of the 6 field and W 
field terms. They are 

M = ifg [ ( A 3 + A 4 1 P I 4 ’, ( I + i Y S  U, W:, I 
+ifg‘[(A1 + A4)p14@, {(I - i Y q )  U ,  + 2 P )  WA] - ( p  e v terms). (3.9) 

C terms. These are the terms arising from the derivative and the &field terms. 

M?’ = $ i f ( A , +  A,)p, (d”4 ’ -&d ” )  - a { f ( A 7 +  A4)p,}’[4 p ,  4 ’ I .  (3.10) 

We shall discuss these terms in reverse order. 
For a general gauge the first of the C terms (3.10) contains the curl of the frame 

field. However, we shall take the matrices to be constant by choosing the Dongpei 
gauge; then the curl vanishes as a classical field and the second term is equal to 

[ p  f. v). (3.11) 

The B terms, by given (3.91, are of the same general form as those used by Dongpei 
to introduce boson masses into the Lagrangian. We shall see that these terms d o  in 
fact provide exactly the correct mass terms for the GSW bosons, provided that the 

They are 

- f 2  77 ( A 4 + A 3 1 p4 Y@ Y ’ 
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constant f is suitably chosen. By using a covariant derivative containing the frame 
field, these boson mass terms arise as multiples of the electron mass; in more general 
models, such as the model we shall consider in d 4, the extended covariant derivative 
would contain more fermion masses, and a set of relationships between fermion and 
boson masses would result. The frame field concept provides a systematic scheme for 
introducing Dongpei-type mass terms through the extended covariant derivative. 

We shall now analyse the B terms in some detail, since the details are both instructive 
and important. We are using Dongpei gauge, so f4  ’ is constant and  equal to amy’. 
Since P commutes with (A3+A4)p,4’, it does not contribute to (3.9). Using the values 
of { U a }  given by (2.9), the remaining terms give both charged and neutral field 
contributions. The charged field contributions arise from the terms in the first term 
of (3.9) with a = 1,2 ,  and  are equal to 

(mg/32)[(A,+A4)p,y”, (I+iy5)iA,p3y5IWY-(p * v terms) 

= (-img/l6)[A,ply” - E ~ ~ , A , ~ ~ Y ” Y ~ ~  WY - ( p  * v terms) (3.12a) 

where i and j are summed over 1 and 2 ,  since one A 3  and one A 4  term vanish. The 
neutral field contributions arise from the first term of (3.9) with a = 3, and from the 
second term, with P omitted. The I U3 terms are zero, but the iy, U3 terms contribute 

(mg/32)[(A3+A4)plyP, iA3p4y51 Wi  

+ (mgf/32)[(A3+ A J P ~ Y ’ ,  -iA3p4y51 W,Y - ( p  * v terms) 

= (im/16)(A3+ A,)p,y’y,(gW: -g‘W,Y) - ( p  v terms). (3.126) 

The opposite signs arising from the helicity factors are extremely important, since by 
(2.21) and (2.20) this expression is just 

( 3 . 1 2 ~ )  

with zero contribution from the field A”. The B terms (3.9) are equal to the sum of 
of (3.12a) and (3.12c), giving 

-(img/16)(A,+A,)p,y’y5Z” sec Ob. - ( p  e v terms) 

(3.13) 

As discussed in d 2, the expression MX‘ in (3.8) is gauge covariant. The sum 
ME”+ MF‘ is also gauge covariant. From this gauge covariant expression, we can 
form invariant mass terms by generalising Dongpei’s method. We define from (3.10) 
and (3 13) the gauge and relatiListically invariant element 

{Tr[ggJ)gu,,(ME‘ + M ? ’ ) ( M T +  ME”11/16 

= ITr[g,,g,,,ME’ ME’] +Tr[g,,,g,,,M?’ M?’l1/16. (3.14) 

By using (1.81, the second trace term in (3.14) becomes 

( - f 2 /  8 )g,,g, I, Tr{ (d’d ‘ - d ‘  4 ’ (d”d ” - d”4 ’’ ) - f  ’[ 4 ’, d ‘ 1 4 ”, 4 ” 11. (3.15) 

Apart from the trace operation and a factor of if’, the first term in (3.15) is the usual 
Lagrangian for a vector field. Although this first term is zero in the Dongpei gauge, 
it is reasonable to normalise (3.15) by dividing by ! f 2 .  Using this normalisation in 
the Dongpei gauge, (3.15) becomes 

-24 f ’~ ‘  

which is constant and changes the zero of the kinetic energy 
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The first trace term in (3.14) contains a factor g’, and must be divided by the square 
of a coupling constant to produce a boson Lagrangian mass term. We must use the 
same normalisation for the B terms as for the C terms in (3.14). Thus dividing by y2, 
we obtain 

( 1 1 8s‘ Tr[ g,,g,,,M 6” M g  1. (3.16) 

Using (3.13) and (3.14) and trace formulae such as 

T r [A:p iy ,y” ]=4~16=64  ( 3 . 1 7 ~ )  

Tr[A;piy,yiy’y5] = 4 x  16 = 64 (3.176) 

and 

Tr[(A~+A,)’pSy,y,y,y,] = 4 x 2 x  1 6 =  128 ( 3 . 1 7 ~ )  

the expression (3.16) reduces in the Dongpei gauge to 

(1/4f’)(img/ 16)’128[ W,,,Wf‘+sec’ B,+,Z,,Z”] 

= - ~ ( m g / 2 f ) ’ [ ~ , , , W , ” + s e c ’  ewz,,z”]. (3.18) 

This choice of normalisation leads us to identify the mass of the W bosons in this 
model as 

M w  = mg12.f (3.19) 

we stress that this relationship is model dependent, since the electron mass m is the 
only fermion mass entering the model. A more complete theory would introduce higher 
fermion masses, such as that of the muon or the tau lepton or the quarks, which might 
be expected to alter the relation (3.19). In  the next section, however, we shall see that 
this relationship is in a sense unaltered by the introduction of other fermions, even 
though the value o f f  is changed. 

The crucially important facts about expression (3.18) are: 
( a )  these invariant terms are of the form of Lagrangian mass terms; 
( 6 )  the photon mass is zero; 
( c )  the mass ratio 

Mz /MI+ = sec ON (3.20) 

independent of the choice off  or of the normalisation of the terms. Also, as we have 
already noted, opposite helicities are needed to give zero photon mass. We have shown 
therefore that, by choosing the matrix elements in this model to agree with the GSW 

theory, the extended covariant derivative (incorporating the frame field) gives the 
correct boson mass ratios in the Dongpei gauge. Our form of spin gauge theory thus 
provides an  explanation of boson masses which does not depend upon the Higgs-Kibble 
mechanism. 

Before discussing the A terms, i t  is worth noting certain points about the calculation 
of the B terms. First, we note that the W:’, i = 1,2 ,  terms in ( 3 . 1 2 ~ )  are of a different 
form to the W: terms in (3.126); but when the trace calculations are carried out, these 
two sets of terms contribute equal factors (128) through the sum of ( 3 . 1 7 ~ )  and (3.176) 
and through ( 3 . 1 7 ~ ) .  So our  procedure for introducing mass does not in the end violate 
SU(2) group covariance. What is remarkable is that, because of the ( A ?  + A,) factor 
in the frame field factors in (3.91, the helicity factors in the W field terms are essential 
to the group symmetry being reflected in the mass terms. Further, the equality of 
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( 3 . 1 7 ~ )  to the sum of (3.17a) and (3.17b) is essential to establishing the mass relationship 
(3.20). We are of the opinion that the crucial part played by the helicity factors in 
this calculation indicates that these factors are not just some eccentricity of nature, 
but will prove to be an  essential part of a full theory. 

Now that we have used the B terms to obtain the Lagrangian mass terms, let us 
return to consideration of the A terms, which provide the ‘kinetic’ terms. Since MZ“ 
is gauge covariant, the trace term 

{Tr[gp,,gm7M 2’’M2’11 
is gauge invariant, independently of (3.14), and hence it can be normalised indepen- 
dently of (3.14). However, since both mass and kinetic terms arise from the commutator 
[A,’, A ” ]  of the extended covariant derivative, it would be particularly neat if their 
normalisation factors were the same; then the full boson Lagrangian would be of the 
simple form 

- K  Tr{gwpgLJA”, A Y l [ A P ,  A V  (3.21) 
where K is an appropriate constant, such as ( 1/8f2). We shall discuss this possiblity 
further in 8 5; for the present we note that, in this model, this simple procedure does 
not work. The fact that MN is very much larger than m, the only fermion mass in the 
model, shows, through (3.19), thatf (or whatever coupling constant we use to normalise 
the mass terms) is much smaller than g and  g’; to produce independent kinetic terms 
for the Wz ( a  = 1,2,3)  fields and for the WI field, we have to follow the procedure 
outlined in 9: 2. It is interesting to note, however, that if g and g’ satisfied the relation 

g / g ’ = J 3  
we could then evaluate the kinetic terms together by calculating 

( I /  16g’) Tr[g,,g,,,MZ”M2rl. 
Substituting from (3.81, and using trace formulae such as 

Tr[ h, U ,  h +  U , ]  = Tr[ hTA4p4] = 8 

Tr[(h+ U,+ P 1’3 = Tr[h+ U3h, U,] +Tr[A,p,I] 

= 8 + 16 = 24 

and 

we find that (3.23) reduces to 

-+ [ (a ,  waz, - a,, wop + g&ab‘ [ wbF3 wcu]) (d”  w; -8“ wz 

(3.22) 

(3.23) 

+ gE,h‘ w:: 3 W‘”1) + (8, w4 L - a Y w,, ) (ar  w: - a” w: 11 (3.24) 
provided that (3.22) holds. This would imply that the Weinberg angle was 30°, so that 
sin2 ew = 0.25. The most recent experimental results for this quantity place its value 
between 0.22 and 0.23. The model we are presenting only deals with the leptons of 
the first generation, and does not attempt to deal with strong interactions; within the 
limits of this model, the ratio (3.22) could be a good first approximation to the measured 
value. Then the kinetic terms in the Lagrangian, like the mass and frame field terms, 
can have a common normalisation factor. It could be that, in a full theory, the full 
boson Lagrangian is given by (3.2 11, implying certain relationships between fermion 
and boson masses: the introduction of large fermion masses (perhaps an especially 
large quark mass) into the extended covariant derivative would imply frame field 
couplings much larger than A given by a variant of (3.3); this might allow a common 
normalisation of all boson Lagrangian terms. 
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4. The first generation quark Lagrangian 

In  two previous papers [4,7] on spin gauge theories, we obtained the covariant 
derivatives for different particles from the lepton covariant derivative by transforming 
the representation of the Clifford algebra, leaving the form of the spinor unchanged. 
We adopt the same principle here and define the first generation quark representation 
by transforming the covariant derivatives of $ 5  2 and 3. The transformation corresponds 
to a change of the eighth basis vector in the representation of CZ,h used in 5 2. The 
pseudoscalar ih4p31 of the algebra C2,6 can be regarded as a ninth basis vector T9 in 
a representation of C2,,; then the transformation T, given by 

T, = exp[irJ,a] 

= exp[-ih,p,la] ( 4 . 1 ~ )  

Any element r A  of the algebra in the covariant derivative is transformed by the 

T, r A  T i ' .  (4 . lb)  

By transforming the elements of the lepton covariant derivative (2.13), we obtain the 
covariant derivative for a 16-component spinor 4,. We assume that the spinor 4, and 
its conjugate 

with a constant, is a rotation in the 8-9 space. 

similarity transformation 

have the same form as 4 and 6 given by (2.2) and  (2.4), that is, 

4, = (a,aRbLbR)' 

J m  = (aLa,b;6R) 
for some four-component spinors a and b. As we pointed out in [4], we could replace 
the transformation (4.1 b)  of the elements in the covariant derivative by an equivalent 
transformation of the spinor of the form 

4+ T i '$ .  

Since {T,} and r are invariant under the change of representation (4.1 1, the kinetic 
energy for the spinor has the same form as the lepton kinetic energy. Of the 
generators h+U,  ( a  = 1 , 2 , 3 ) ,  h - U ,  and P used in the gauge transformation ( 2 . l l ) ,  
and hence in (2.131, only P undergoes a change of representation under (4.1). The 
element P transforms to P' where 

P ' = ( Z , , c o s 2 a  -iAlp,f  s i n 2 a ) P  

= P cos 2 a  - ih3p, y. sin 2a .  (4.2) 

Hence the interaction terms for the a and  b spinors corresponding to the lepton terms 
(2.16)-(2.18) are unchanged in form. However, the term (2.19) becomes 

-ig'6u(A4p,cos 2a - t -A?p,  s in2a )W4( iy5)4 , .  (4.3) 
The sin 2 a  term in (4.3) is zero on decomposition to four-component spinors a and 
b ;  the vanishing occurs since in each term of the decomposition a four-component 
spinor and its conjugate of the same handedness are present. By analogy with (2.19), 
the non-zero term in  (4.3) decomposes to 

Ig'cos 2 a ( a J v 4 a +  6Jv46). 
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By introducing the fields A* and 2” through (2.21), the total neutral field interaction 
terms for the a and b spinors becomes 

f e [ H A ( c o s 2 a + 1 ) a + ~ A ( c o s 2 a - l ) b ] + I g [ a  sin’ 6 , , ( c o s 2 a + 1 ) Z a - H R Z a L  

+ 6 sin’ ew (cos 2a - 1)Zb + 6,ZbL]/cos O w .  (4.4) 

For a given angle a, we wish to identify the spinors a and b with the down and  
up  quark spinors d and U respectively. As we noted above, for any angle a,  the kinetic 
energy terms and interaction terms with the charged W fields for the a and b spinors 
are identical to those of the down and up  quarks. Therefore, we must choose a in 
order that the terms (4.4) give the correct neutral field interactions for the quarks. Taking 

cos 2 a  = - $  (4.5) 

a = d and b = U, the terms (4.4) become 

+edAd -+eiiAu +Ig[j sin’ 0 , d Z d  - d R Z d L  - $  sin’ e,ii,& + iiRzuU,]/cos ew (4.6) 

which are the correct GSW interactions of the up  and down quarks with the photon 
and 2-fields. 

By changing the representation of the Clifford algebra in the lepton model of 8 2 
using the transformation (4.1) with 2 a  = cos-’(-+), we obtain the weak interaction 
Lagrangian for the first generation quarks. We note that this value of 2 a  is the interior 
angle of a regular tetrahedron. This suggests that the inclusion of quarks of three 
colours might lead to some form of tetrahedral symmetry between the leptons and the 
quarks [4]. 

If we apply the transformation (4.1) to the extended covariant derivative (3.6), we 
find that the lepton mass term 

I  -1 d h ( - A 4 - A 3 ) p 4  Im IL+conjl 

is unchanged when we transform to the quark representation. This would imply that 
the down quark had the same mass as the electron and that the up quark had zero 
mass. Thus the simple mass model of § 3 must be modified so that on transformation 
we generate the correct form of mass terms for the quarks. The modification is carried 
out by introducing into the lepton model extra mass terms [7], which are not invariant 
under the transformation (4.1). 

We propose replacing the original mass terms in ( 3 . 7 )  by 

(4.7a) I -  z 4 ( - p l A 4 -  p2A3)p41tL +conj 

and adding the terms 

(4.7b) 1 -. z81( -p3h4-p4h3)P3ys8+con j .  

By adding ( 4 . 7 ~ )  and (4.76) we obtain the complete lepton mass term 

i&iLpiY+[ i f iA4p,4*  +i f2h3p,d*  - i f A p 2 y s d *  -if4h3p2ys4*]cL+conj (4.8) 

where 

PI = 4f;v i = 1, 2, 3 ,4 .  (4.9) 

The extended covariant derivative is thus 

A* = I ld* -fl* + i f lA4p ldF  +iflh3p1d* -i,fiAJp2y5d* -if4A3p2ys4*. (4.10) 
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On decomposition the terms (4.8) become in the Dongpei gauge 

- E ( P l  +P'+P3+P4)E - V ( p ,  - -P?+P?  - P4)v 

and hence we require 

PI + P2+ P3+ P4 = me 

PI - P2+ P ;  - P4= 0 

(4.11a) 

(4.11b) 

where m, is the electron mass. 
The commutator of the new extended covariant derivative (4.10) produces three 

different types of terms as in 8 3. The A terms are the same as (3 .8 ) ,  and the B and 
C terms become respectively 

M:" = k [ ( f , A 4 P 1 1  + f J 3 p l 1  - f 3 A 4 ~ 2 ~ f . - f 4 A 3 ~ ? ~ 5 ) 4 ' ,  ( 1 + i y 5 )  U,Wil 

(4.12) 

and 

MF" = i(flA4P11 + f r A 3 p , 1  - ~ ~ A 4 ~ Z ~ z - f 4 A 3 ~ ? ~ s ) ( d ' 4 "  -d"4") 

- [ ( f , A 4 P , I  + f h 3 P 1 1  - f ; h 4 P 2 Y . s - f 4 h ; P r Y 5 ) ~ I J ,  

( fl A 4 P 1 1 + f 2  A 3 P I I - f 3  A 4  P: Y 5 - f 4 A  3 P2 Y 5 1 4 " I. (4.13) 

The analysis of the B terms in the model of 9 3 carries forward to our new model, 
with the opposite signs in the helicity factors playing a crucial role as before to ensure 
that the A" field gives a zero contribution. By analogy with (3 .13 ) ,  we find that the 
terms (4.12) become 

ME " = ( -ig/ 8 { [ P I A t  P? Y P  - F:  ~3 ,, A, ~2 Y Y 5 + P L ~  A I P I Y' Y 5 - ~4 €3 '1 A, P I I K 
+ [ ( C L ~ ~ ~ + P Z A J ) P I Y ) * Y " P ~ A ? + P ~ A ~ ) P ? Y ~ I Z " ~ ~ ~  e,,} 
- ( F  8 v terms). (4.14) 

As in 8 3 ,  we define the gauge and relativistically invariant quantity 

{Tr[g,,g,,,,M G''M 1;"] + Tr[ ggPg,,J4?" M ?."I}/ 16. 

The second trace term is 

-sF2g+i,gy"r Tr{(d'dL -a"4")(a"4" -8"d") - F 2 [ 4 ' ,  4"][4', 4"]} 
where 

(4.15) 

F' = f f  +f; +f;- +f;-. (4.16) 

By analogy with ( 3 . 1 5 ) ,  we normalise (4.15) by dividing by F'. Using the same 
normalisation for the B terms, we obtain 

{Tr[g,,g,,,,M~"M~r]}/16F' = - i ( M g / 2 F ) ' [  W,, W:'+sec? B,Z1,Z'] (4.17) 

where 

M ?  = p ; + p ; + p ; + p : .  (4.18) 

Therefore, in this model, we identify the mass of the W bosons as 

M,<. = M g / 2 F .  (4.19) 
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From (4.9), (4.16) and (4.18), we can show that 
M = 4 q F  

and hence 
7 = M w  /2g (4.20) 

which is the same as (3.19). 
In  contrast with the model in $ 3 ,  the complete lepton mass term (4.8) in this new 

model is no longer invariant under the transformation (4.1). On transformation, the 
term (4.1) becomes 

t&n(-pIA4-~2A3)~41 - ~ P ~ ( C O S  2 a h 4 ~ 3 ~ ~ + ; i n 2 a h 3 p , y , )  
- ip4(cos 2ah3p3y5+sin 2aA4p2ys)4a +conj. (4.21) 

On decomposition to four-component spinors, the terms involving sin 2 a  are zero by 
virtue of the presence of h + h _  terms. The remaining terms give 

-d[pl  +p,+COs 2 a ( / ~ 3 +  p4)Id - g[pi - ~ L ~ + C O S  ~ ~ ( F L J - F ~ ) I ~ .  
Taking the value of cos 2 a  given by (4.5), we must impose, in addition to (4.11), the 
conditions 

( 4 . 2 2 ~ )  

(4.226) 

where md and mu are the masses of the down and up quark respectively. Solving (4.1 1) 
and (4.22) for p,, i = 1 ,2 ,3 ,4 ,  and using the results in (4.18), we find that 

If the hypothesis in (3.21) were correct, then the normalisation factors g‘ and F2 of 
the different terms (3.23) and (4.17) in the boson Lagrangian would have to be the 
same. But, from (4.19), 

g / F =  2 M w l M  (4.23) 
which is of the order of 300. As in the model of $ 3, we cannot adopt the same 
normalisation for all the terms. 

By changing the mass model of $ 3 with the introduction of extra terms, we have 
been able to use the postulate put forward in an earlier paper that the extended 
covariant derivative of the first generation quarks can be obtained from that of the 
leptons by changing the representation of the Clifford algebra. Since the element i rJ9 
and the angle a in the transformation (4.1) are constant, under the change of representa- 
tion the lepton extended covariant derivative A +  transforms to 

I*, + p.2 -f(p3+p4) = md 
@ I  - p2 - f ( / l 3  - p 4 )  = m u  

M 2 =  [5mz+9( m:+ m t )  -6m,md]/ 16. 

T, A* T ;  I .  

Hence the terms {Tr[g, ,g, . , ,M~”M~]}/16, {Tr[g,,g,,,M~”M~.”]}/16 and 
{Tr[g,,g,,,M~”MC’]}/16 appearing i n  (3.23), (4.15) and (4.17) are the same in both 
the quark and the lepton representations. So the boson Lagrangian terms are invariant 
under the change of representation. 

5. Summary and discussion 

First we shall summarise the previous four sections of this paper. 
Section 1 lays down the general principles of spin gauge theories, emphasising the 

differences between spin and standard gauge theories. Among the important properties 
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of spin gauge theories are their consistency within the Clifford algebra framework, the 
broader range of allowable gauge transformations, the unification of spacetime and  
symmetry transformation spaces within the algebraic framework, and the gauge invari- 
ance of all possible fermion mass terms. 

Section 2 shows how the matrix elements of the GSW theory of electroweak interac- 
tions of the electron and  its neutrino are the consequence of a particular spin gauge 
invariance. The leptons form a 16-component spinor, acted on by elements of the 
Clifford algebra C2,6 .  

Section 3 introduces a new set of concepts concerning mass. These start with the 
idea that a fermion mass is the result of a coupling of the fermion field to the ‘frame 
field’. The frame field appears naturally in a n  ‘extended covariant derivative’ in the 
same way as the normal boson fields. These ideas are applied to the lepton model of 
$2 .  The commutator of components of this extended covariant derivative gives rise, 
in ‘Dongpei gauge’, to boson mass terms; these mass terms have precisely the observed 
properties of the masses of the photon, W and Z boson fields; the W mass can be fixed 
by choosing a basic constant 7 of the frame field, the ‘frame inertia’. The extended 
covariant derivative and frame field therefore give an explanation of boson masses in 
the GSW theory which does not depend upon the Higgs-Kibble mechanism. Our 
approach also contrasts with the kinetic view of mass suggested by the ‘free electron’ 
operator ( y p p p + Z m ) ,  with the mass m considered to be a ‘fifth component’ of 
4-momentum; the basic difficulty of this approach is that { y p }  belongs to the odd part 
of the Dirac algebra, while 1 belongs to the even part. The frame field concept, with 
mass based on a vector potential rather than being a ‘kinetic scalar’, eliminates this 
algebraic awkwardness. 

Section 4 uses a postulate put forward in an  earlier paper [4], that the extended 
covariant derivative for first generation quarks is obtained from that for the leptons 
by simply changing the Clifford algebra representation, and  introducing extra mass 
terms to fit the masses of the up  and down quarks. The correct electromagnetic 
interactions of the quarks are given by a specific change of the eighth basis vector; we 
show that this change of representation also gives the correct GSW weak interactions 
of the first generation quarks. The masses of the W and Z bosons are invariant under 
the transformation from lepton to quark representation, and the boson mass ratios are 
unaffected by the inclusion of the extra mass terms in the extended covariant derivative 
in the model of § 4. 

We have therefore been able to formulate a spin gauge theory, introducing mass 
through the new concepts of the frame field and the extended covariant derivative, 
which reproduces all of the interactions and  the boson masses of the GSW theory. 
Further study of this theory is needed in order to investigate the alternative to the 
‘Higgs structure’ which follows from the assumption of the physical existence of the 
frame field, and of the particles which will be associated with it in a quantised theory. 

Our proposal to interpret fermion mass terms in terms of the frame field is a 
philosophical innovation. In our  factorisation of mass terms we have written 

The frame field d p  is thus defined by 

d p  = 71YW 

= q g p ’  yt,. 
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In this paper we have kept the metric fixed and constant; the spacetime metric is 
Min kowski. Therefore, 

4 )  = -17% i = l , 2 , 3  

b4 = V Y 4 .  

Thus each component of the frame field is proportional to an element of the spacetime 
vector basis. Since { yp (x ) }  represent sets of axes at every point of spacetime, the frame 
field is a physical embodiment of the frame of reference and provides a background 
for other physical fields. The ‘completely empty vacuum’ has long been rejected in 
fundamental physical theories; we now suggest that the frame field is universally 
present, and is responsible for the ‘drag’ which massive fields experience, preventing 
them from travelling with the velocity of light. 

In  this paper the upper and  lower suffix y-matrices are treated quite differently, 
and  play different physical roles: the { y p }  are associated with the fermion spinors in 
the current vector Gyp$, while the { y p }  become the frame field. We believe that it is 
important to generalise these ideas to manifolds with more general metrics; then 
the different roles of {y,} and { y g }  will become even more distinct. The drag of a 
massive particle on the frame field could distort the field, and this distortion influence 
the motion of a neighbouring massive particle; in other words, the frame field might 
be the carrier of Einstein curvature. It is clear that these intuitive ideas need to be 
embodied in a carefully constructed mathematical framework before they can be 
regarded as more than an  attractive hypothesis. 

In this paper, we have carried out our calculations in Dongpei gauge. This choice 
of gauge corresponds to a spacetime basis which is constant, and is thus related to a 
Cartesian frame. Since a spin gauge theory is invariant under a class of gauge 
transformations, we can imagine that some computations can best be carried out in a 
gauge in which the y-matrices are not constant, perhaps (but not necessarily) corre- 
sponding to a geometric frame whose axes vary in spacetime. 

The details of our calculations have revealed certain restrictions that arise from 
the use of an  extended covariant derivative. We have seen that the preservation of 
SU(2) symmetry in the W field masses depends critically upon the helicity factors in 
the GSW interactions, and  that, apart from an  overall factor, the boson mass matrix is 
precisely determined by the GSU’ interactions and the fermion masses. The fact that 
these restrictions upon the theory produce mass properties which agree exactly with 
experiment provides theoretical links between the observed properties of the matrix 
elements and the boson masses. In a more general model, we would expect similar 
restrictions to arise ( a )  through the sharing of the group symmetry of matrix elements 
by the boson masses, and  (b )  by the dependence of the boson mass matrix on the 
fermion masses, determining exactly which fields corresponded to observed particles, 
and fixing their mass ratios. We also suggest that, in a more complete model, the 
commutator [Ag, A ,  ] in Dongpei gauge might be proportional to the complete boson 
Lagrangian; this is not true in the present models, and would imply yet further 
restrictions on the masses and coupling constants of a model. A study needs to be 
made of these restrictions on a general model based on the extended covariant 
derivative. The hypothesis embodied in (3.21) implies the existence of one or more 
fermions with mass of the same order of magnitude as 2 M ,  so that a mass relationship 
of the form (4.23) with F = g  can hold; i t  is doubtful whether the mass of the ‘top 
quark’ will be sufficiently large to provide a relationship in a full theory. I f  this is so, 
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it is possible that a fourth generation of fermions would be sufficiently massive. In 
formulating a full theory, one also faces the universal problem of deciding which 
particle fields are fundamental; for example, should the muon be regarded as funda- 
mental, o r  should it be regarded as a three-particle decaying state? We have assumed 
that the neutrino mass is zero, but a non-zero mass will still give, through (4.14), a 
zero photon mass. Also, through (4.16) and (4.18), the relation (4.20) would be 
maintained. A non-zero mass would of course have some observable physical con- 
sequences. 

This constant 77 plays a very significant role in defining the frame field, and its 
value is very important. At first sight it seems that the value given by our models will 
be highly model dependent, but this may not be so. In the model of § 3, which contains 
only one fermion mass, we find from (3.3) and (3.19) the value 

77 = Mw /2g. (5.3) 
This same value is given by (4.20) for the fuller model of § 4, which includes quark 
masses. It may be that (5.3) is a model-independent formula. If in (5.3) we use the 
value sin Ow = O S ,  then 7 has the value Mw/4e. In a quantised field theory, the 
coupling constant e can be regarded as dimensionless, so that 7 has the dimension of 
mass, and is approximately 3 Mw ; 7 is not the mass of the frame field quanta, which 
is zero, but we would expect the presence of the frame field to be detectable at energies 
corresponding to 77, which will be accessible with the next generation of machines. 
We repeat however that the value (5.3) is based upon limited models, not incorporating 
strong interactions and other generations, and  so may not be accurate. In a quantised 
theory, 77 would also define a fundamental length; so the value of 77 is of great 
importance, but our models need to be extended before the relation (5.3) can be 
regarded as a definite consequence of this type of theory. 

A fundamental problem of theories involving massive bosons is that of renormalisa- 
tion. The standard GSW theory, based on the Higgs-Kibble mechanism, was eventually 
shown by ’t Hooft [ 121 to be renormalisable. In this paper we d o  not attempt to study 
the renormalisation problem, but we shall explain why we believe that the theory may 
well be renormalisable. The boson mass terms (3.18) are, in a general gauge, given 
by (3.9) and  (3.16); that is, they are interaction terms of massless boson jields of the 
form ‘&$WW’. The other boson-boson interaction terms are the [ c $ ~ ,  4,][d”, 4”] 
type terms in (3.15). So in a general gauge, we are dealing with massless fields with 
interaction terms of an order which might reasonably be expected to be renormalisable. 
The fact that 4,, is a matrix vector field means, however, that we cannot immediately 
extend established proofs of renormalisability. 

In this paper, we have assumed a constant metric for the eight-dimensional vector 
space associated with CZ,h. However, if the associated space had an  x-dependen 
metric, then it would be very natural to extend the gauge transformations (whose 
generators (2.9) are formed from Ts ,  r6, r,, r,) to include Lorentz transformations 
(whose generators are bivectors in the space spanned by r l ,  T r ,  r3, r4), and to relate 
them to gravitation [13-151. It seems that gravitation may arise naturally when we 
consider the ‘free frame field’ Lagrangian, that is, the first term in (3.15), on a curved 
Riemannian manifold; preliminary calculations (and related work [ 16-18]) indicate 
that this term is closely related to the curvature scalar, through the spin connection. 
It would not be surprising if the frame field turned out to describe gravitation, since 
the basic Clifford algebra relation 

{Y,(X), rL,(X)) = 2&”(X)I (5.4) 
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holds on a manifold with x-dependent metric, and says that y , ( x )  is the 'Dirac square 
root' of the metric. It would be very interesting if the free frame field, arising in our  
flat-space model, did turn out to describe gravitation on a curved manifold. Normally, 
terms are introduced into a covariant derivative to ensure covariance of a given quantity 
under certain transformations; this is not true of the frame field term in (3.6). However, 
we envisage that on a curved manifold the frame field might be related to Poincare 
covariance in spacetime. 
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